skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Glauser, Mark N"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This article presents an extended state observer for a vehicle modeled as a rigid body in three-dimensional translational and rotational motions. The extended state observer is applicable to a multi-rotor aerial vehicle with a fixed plane of rotors, modeled as an under-actuated system on the state-space TSE(3), the tangent bundle of the six-dimensional Lie group SE(3). This state-space representation globally represents rigid body motions without singularities. The extended state observer is designed to estimate the resultant external disturbance force and disturbance torque acting on the vehicle. It guarantees stable convergence of disturbance estimation errors in finite time when the disturbances are constant, and finite time convergence to a bounded neighborhood of zero errors for time-varying disturbances. This extended state observer design is based on a Hölder-continuous fast finite time stable differentiator that is similar to the super-twisting algorithm, to obtain fast convergence. Numerical simulations are conducted to validate the proposed extended state observer. The proposed extended state observer is compared with other existing research to show its advantages. A set of experimental results implementing disturbance rejection control using feedback of disturbance estimates from this extended state observer is also presented. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Weather, winds, thermals, and turbulence pose an ever-present challenge to small UAS. These challenges become magnified in rough terrain and especially within urban canyons. As the industry moves towards Beyond Visual Line of Sight (BVLOS) and fully autonomous operations, resilience to weather perturbations will be key. As the human decision-maker is removed from the in-situ environment, producing control systems that are robust will be paramount to the preservation of any Airspace System. Safety requirements and regulations require quantifiable performance metrics to guarantee a safe aerial environment with ever- increasing traffic. In this regards, the effect of wind and weather disturbances on a UAS and its ability to reject these disturbances present some unique concerns. Currently, drone manufacturers and operators rely on outdoor testing during windy days (or in windy locations) and onboard logging to evaluate and improve the flight worthiness, reliability and perturbation rejection capability of their vehicles. Waiting for the desired weather or travelling to a windier location is cost- and time-inefficient. Moreover, the conditions found on outdoor test sites are difficult to quantify and repeatability is non-existent. To address this situation, a novel testing methodology is proposed, combining artificial wind generation thanks to a multi-fan array wind generator (windshaper), coherent GNSS signal generation and accurate tracking of the test subject thanks to motion capture cameras. In this environment, the drone being tested can fly freely, follow missions and experience wind perturbations whilst staying in a modest indoor volume. By coordinating the windshaper, the motion tracking feedback and the position emulated by the GNSS signal generator with the drone’s mission profile, it was demonstrated that outdoor flight conditions can be reliably recreated in a controlled and repeatable environment. Specifically, thanks to real-time update of the position simulated by the GNSS signal generator, it was possible to demonstrate that the drone’s perception of the situation is similar to a corresponding mission being executed outdoor. In this work, the drone was subjected to three distinct flight cases: (1) hover in 2 m s−1 wind, (2) forward flight at 2 m s−1 without wind and (3) forward flight at 2 m s−1 with 2 m s−1 headwind. In each case, it could be demonstrated that by using indoor GNSS signal simulation and wind generation, the drone displays the characteristics of a 20 m move forward, while actually staying stationary in the test volume, within ±1 m. Further development of this methodology opens the door for fully integrated hardware-in- the-loop simulation of drone flight operations. 
    more » « less